Prediction of Protein Subcellular Multi-locations with a Min-Max Modular Support Vector Machine

نویسندگان

  • Yang Yang
  • Bao-Liang Lu
چکیده

How to predict subcellular multi-locations of proteins with machine learning techniques is a challenging problem in computational biology community. Regarding the protein multi-location problem as a multi-label pattern classification problem, we propose a new predicting method for dealing with the protein subcellular localization problem in this paper. Two key points of the proposed method are to divide a seriously unbalanced multi-location problem into a number of more balanced two-class subproblems by using the part-versus-part task decomposition approach, and learn all of the subproblems by using the min-max modular support vector machine (M-SVM). To evaluate the effectiveness of the proposed method, we perform experiments on yeast protein data set by using two kinds of task decomposition strategies and three kinds of feature extraction methods. The experimental results demonstrate that our method achieves the highest prediction accuracy, which is much better than that obtained by the existing approach based on the traditional support vector machine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Protein Subcellular Multi-localization by Using a Min-Max Modular Support Vector Machine

Prediction of protein subcellular location is an important issue in computational biology because it provides important clues for characterization of protein function. Currently, much effort has been dedicated to developing automatic prediction tools. However, most of them focus on mono-locational proteins. It should be noted that many proteins bear multi-locational characteristics, and they ca...

متن کامل

Multi-View Face Recognition with Min-Max Modular Support Vector Machines

As a result of statistical learning theory, support vector machines (SVMs)[23] are effective classifiers for the classification problems. SVMs have been successfully applied to various pattern classification problems, such as handwritten digit recognition, text categorization and face detection, due to their powerful learning ability and good generalization ability. However, SVMs require to sol...

متن کامل

Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs

MOTIVATION The subcellular location of a protein is closely correlated to its function. Thus, computational prediction of subcellular locations from the amino acid sequence information would help annotation and functional prediction of protein coding genes in complete genomes. We have developed a method based on support vector machines (SVMs). RESULTS We considered 12 subcellular locations in...

متن کامل

Support vector machine approach for protein subcellular localization prediction

MOTIVATION Subcellular localization is a key functional characteristic of proteins. A fully automatic and reliable prediction system for protein subcellular localization is needed, especially for the analysis of large-scale genome sequences. RESULTS In this paper, Support Vector Machine has been introduced to predict the subcellular localization of proteins from their amino acid compositions....

متن کامل

Learning from imbalanced data sets with a Min-Max modular support vector machine

Imbalanced data sets have significantly unequal distributions between classes. This between-class imbalance causes conventional classification methods to favor majority classes, resulting in very low or even no detection of minority classes. A Min-Max modular support vector machine (M-SVM) approaches this problem by decomposing the training input sets of the majority classes into subsets of sim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006